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Abstract

Plant pathogens cause different diseases on crops and industrial plant species that result in economic losses.
Pathogen-free plant material has usually been obtained by traditional procedures such as meristem culture,
thermotherapy, and chemotherapy. However, there are many limitations of these procedures such as
mechanical challenges of meristem excision and low regeneration rate, low resistance to high temperatures,
phytotoxicity, and mutagenic effects of the chemicals used in the procedures. Cryotherapy is a newly
developed biotechnological tool that has been very effective in virus elimination from economically
important plant species. This tool has overcome the abovementioned limitations. This chapter aims to
highlight the importance of the cryogenic procedures (vitrification, encapsulation-vitrification, droplet
vitrification, two-step freezing, dehydration, encapsulation-dehydration) in order to generate virus-free
germplasm.
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1 Introduction

Plant pathogens such as bacteria, fungus, and viruses cause harmful
diseases on plants, and some of them can cause direct and/or
indirect losses of billions of dollars every year. Plant viruses causing
diseases on plants can destroy crops and industrial plant species;
therefore, they have negative effect on food security and crop
industry [1, 2]. Chemical therapies or physical treatments are not
sufficient to be directly controlled of them. There are many differ-
ent traditional ways to prevent for virus contaminations such as
biological and chemical control of the vector being often an insect
transmitting viruses, growing virus resistant crop varieties being
made via genetic transformations, using virus-free planting material
and the protection of disease placement in fields where viruses do
not yet occur [3, 4].
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Pathogen-free (especially virus-free) plant material has gener-
ally been obtained using meristem culture and/or thermotherapy
methods [5, 6]. For successful viral elimination via meristem cul-
ture, it is usually necessary to excise shoot tips that are 0.1–0.5 mm
(depend on plant species) in size [7, 8]. There are some limitations
for virus elimination using these methods such as mechanical chal-
lenges of meristem excision and low regeneration rate [9]. Thermo-
therapy method connected with meristem culture is also a difficult
process requiring specific conditions such as virus-specific treat-
ments and specific equipment. However, all of viruses cannot be
eliminated via thermotherapy, and sometimes the infected plants
are not resistant to high temperatures [10].

An alternative method is chemotherapy for plant virus elimina-
tion. This method based on the usage of antiviral chemicals asso-
ciated with thermotherapy or meristem culture was successfully
used for virus elimination of some infected plants such as apple
[10]. The antiviral chemicals such as quercetin and ribavirin prevent
virus nucleic acid synthesis (replication), and thus the virus concen-
tration cannot increase in infected plants [11]. However, phyto-
toxicity and mutagenic effects of these antiviral chemicals are
reported for some plant species and/or cultivar [12].

Because of some limitations of the traditional methods, it is
beneficial to develop different kind of efficient biotechnological
procedures for obtaining virus-free plants. Cryotherapy—newly
developed biotechnological tool—has been very effective for virus
elimination for economical important plant species such as sweet
potato [13], strawberry [14], raspberry [15], potato [16], grape
[17], and apple [18].

2 Cryotherapy

Pathogen-free (virus-free) plant materials are the most important
for agricultural and horticultural crop productivity and for orna-
mental plant quality [19]. The plants especially vegetatively propa-
gated are inclined to pathogen infections, which are transported to
new plants in infected steels, tubers, roots, and other vegetative
parts of plants. Conservation of plant genetic resources is one of the
most important tools for breeding new species and plant cultivars
for future requirements. However, germplasm collections need to
be established from pathogen-free species and cultivars. Therefore,
development of efficient methods for pathogen elimination is a
critical point of gene banks for maintenance of their
collections [20].

Cryotherapy is a new method used for pathogen elimination
from infected plant shoot tips [13]. There are many reports for
successfully pathogen elimination from plants infected by different
kind of virus and bacteria like pathogens via cryotherapy of shoot
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tips, such as potato [16] and sweet potato [13]. Cryotherapy can be
used for a wide range of plant species and cultivars because it is
based on plant cryopreservation methods being available for many
additional vegetatively propagated and economically important
plant species (Table 1).

In cryotherapy technique, infected plant cells are eliminated by
the fatal efficacy of liquid nitrogen (�196 �C, the ultralow temper-
ature) and/or following warming; mechanical removal is not
required. After cryotherapy treatments, shoot tip regeneration
rates might be lower than traditional meristem culture treatments;
however, larger shoot tips can be used for easier excision, and
obtained pathogen-free materials are much more via
cryotherapy [13].

2.1 Cryogenic

Procedures

Cryotherapy involving physical dehydration and chemical vitrifica-
tion treatments of shoot tips are not needed special equipment in
addition to that used in a basic plant tissue culture laboratory.

Table 1
Different cryotherapy treatments for pathogen elimination for vegetatively propagated and
economically important plant species [21]

Plant Pathogen Cryotherapy method Reference

Banana (Musa) Cucumber mosaic virus (CMV)/
Banana streak virus (BSV)

Vitrification [22]

Beijing lemon,
mandarin, pummelo,
sweet orange
(Citrus)

Huanglongbing bacterium (HLB) Vitrification [23]

Grapevine (Vitis
vinifera)

Grapevine virus (GVA) Encapsulation-vitrification [24]

Grapevine (Vitis
vinifera)

Grapevine virus (GVA) Encapsulation-dehydration [25]

Potato (Solanum
tuberosum)

Potato leaf roll virus (PLRV)/Potato
virus Y (PVY)

Encapsulation-vitrification
Droplet vitrification

[26]

Prunus hybrid Plum pox potyvirus (PPV) Vitrification [27]

Raspberry (Rubus
idaeus)

Raspberry bushy dwarf virus
(RBDV)

Thermotherapy followed by
cryotherapy
(Encapsulation-
vitrification)

[8]

Sweet potato (Ipomoea
batatas)

Sweet potato chlorotic stunt virus
(SPCSV)/Sweet potato feathery
mottle virus (SPFMV)

Encapsulation-vitrification [13]

Yam (Dioscorea
opposita)

Yam mosaic virus (YMV) Encapsulation-dehydration [28]
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Liquid nitrogen being the main material for cryotherapy is usually
easy available in laboratories found in almost all countries. Cryo-
genic treatments are divided into two major groups including
traditional techniques (classical slow cooling) and one-step freezing
techniques [29].

2.1.1 Traditional

Techniques: Classical Slow

Cooling

Classical slow cooling methods cover two-step cooling down to a
specified prefreezing temperature (�40 �C), followed by direct
immersion in liquid nitrogen. During reduction of temperature
by slow cooling, cells and the other medium firstly supercool,
followed by ice formation in the medium [30]. The plant cell
membrane behaves as a physical barrier and prevents the fatal ice
nucleation from the cell inner, and the cells stay unfrozen but
supercooled. As the temperature is further reduced, an increasing
volume of the extracellular solution is transformed into ice form, in
this way resulting in the concentration of intracellular solutes.
whereby the plant cells continue supercooled and hydrated vapor
pressure of them passes over that of the frosted other compartment,
plant cells balance via loss of water to other ice formation. Before
the intracellular components solidify, different amounts of cell
water content will be removed depending upon the prefreezing
temperature and the cooling rate. In ideal conditions, big volume
or almost all intracellular water causing ice nucleation is removed,
in this way decreasing or preventing fatal intracellular ice nucleation
during liquid nitrogen immersion. But sometimes dehydration
causing more intense ice nucleation can induce a series of damaging
cases due to intracellular salt concentration and modifies in the
plant cell membrane [31]. Rewarming process should be as fast as
possible to prevent the fatal re-ice nucleation cases in which ice
reforms at a thermodynamically suitable, bigger, and more harm ice
nucleation form [30].

Classical slow cooling processes contain different consecutive
steps: cold hardening (pre-cold culture at +4 �C) and sucrose pre-
culture (on preculture medium supplemented with different con-
centrations of sucrose) of plant materials, cryoprotection (chemical
vitrification or physical dehydration), slow cooling (0.5–1 �C/min)
to transferring a prefreezing temperature (approximately �80 �C),
immersion of samples rapidly in liquid nitrogen, storage process,
rapid rewarming, and recovery. Classical slow cooling methods are
usually operationally complicated since they require the use of
specific and costly programmable freezers. Sometimes, it can be
used cheap and a specific tool named Mr. Frosty® freezing con-
tainer based on usage of propanol (allows 1 �C/min temperature
reduction) with a -80 laboratory freezer [32, 33].

Classical slow cooling techniques have been successfully applied
to many plant culture types especially in cell suspension cultures and
callus cultures [33, 34].
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2.1.2 One-Step Freezing

Techniques

One-step freezing techniques can be achieved via direct immersion
in liquid nitrogen without slow cooling process (Fig. 1), which is
changed by exposure of plant materials to physical dehydration or
chemical vitrification using a cryoprotectant solution. This tech-
nique is divided into five main procedures: vitrification, dehydra-
tion, encapsulation vitrification, encapsulation-dehydration, and
droplet vitrification [29].

Vitrification Vitrification processes are based on the physical treatments, of
which a high concentration of cryoprotectant solution prevents
fatal ice nucleation in cells during direct immersion in liquid nitro-
gen [35]. Because of amorphous glass formation of cell water
content, all metabolic reactions requiring molecular diffusion
stop, and this amorphous formation leads to metabolic inactivity
and stability during immersion of liquid nitrogen [36].

Vitrification method based on cryoprotectant solutions com-
bines a classical cooling procedure (combining the cryoprotectant
treatment and dehydration steps). After cold hardening and sucrose

Fig. 1 Schematic presentation of three different vitrification methods based on one-step freezing techniques:
cryotherapy, vitrification, encapsulation-vitrification, and droplet vitrification [21]
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preculture, in cryoprotectant treatment, a chemical solution of a
concentrated diffusing cryoprotectant solution is applied, followed
by a vitrification solution. Treatment time, application temperature,
and solution concentration may differ for plant species and cultivars
[37–41].

Different cryoprotectant solutions for vitrification have been
successfully used for cryotherapy and cryopreservation studies
[42, 43]. However, two of them frequently used are the glycerol-
based cryoprotectant solutions named plant vitrification solution
2 (PVS2) [42, 44] and PVS3 [45]. The PVS2 solution contains
30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% (w/v)
dimethyl sulfoxide (DMSO), and 0.4 M sucrose (pH 5.8). PVS3
consists of 40% (w/v) glycerol and 40% (w/v) sucrose in basal
culture medium.

In the vitrification process, the plant material such as shoot tips
and cells must be sufficiently dehydrated by the cryoprotectant
solution (which hardly diffuses into the tissue during the dehydra-
tion process) without causing damage, in order to be able to vitrify
during fast cooling in liquid nitrogen. Consequently, to achieve
successful regrowth after cryopreservation using vitrification meth-
ods, it needs to optimize dehydration tolerance of the plant mate-
rial to be cryopreserved to the vitrification solution. There are many
reports representing that cells and shoot tips have dehydration
tolerance to cryoprotectant solution such as PVS2 resistance fol-
lowing fast cooling in liquid nitrogen with small or no additional
loss in survival [46, 47].

Dehydration Dehydration method based on physical process using activated
silica or laminar airflow for removing water content of tissues and
cells is a very simple procedure, and it only consists of explant
dehydration, then freezing them in fast direct immersion in liquid
nitrogen. Zygotic embryos or embryonic parts extracted from
seeds are usually used for explant sources in this technique. And
this technique has also been applied to a large number recalcitrant
and intermediate species [48–50]. Dehydration process is usually
performed in a sterile laminar airflow cabinet; however, more spe-
cific and effective dehydration conditions are achieved by using a
flow of sterile compressed air or silica gel. Ultrafast drying by using
a compressed dry airstream allows freezing of samples with a rela-
tively high water content, thus decreasing desiccation damages
[51]. The water content of tissue and cells reducing between
10 and 20% (basis on fresh weight) supports optimal survival, and
regrowth rate is generally obtained when samples are frozen during
liquid nitrogen treatment [50].
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Encapsulation-Vitrification Vitrification process allows the explants freezing in a short period of
time. However, this process is difficult to apply for a large number
of samples at the same time, as the duration of the consecutive
stages of a vitrification protocol is usually too short; on the one
hand, these stages require a very definite period, and small-sized
plant materials are difficult to manipulate. On the other hand, the
encapsulation-dehydration methods take a much longer time to
perform; however, encapsulated plant materials are very easy to
manipulate, by using optimum size of the calcium alginate beads
(Fig. 2a–d). Thus, encapsulation-vitrification method combines the
advantages of vitrification having fast application and
encapsulation-dehydration having easy manipulation of
encapsulated plant materials [52].

Encapsulation-Dehydration The encapsulation-dehydration method is based on physical dehy-
dration process of encapsulated plant materials. This method
includes similar application with simple dehydration process; how-
ever, the main difference from simple dehydration is usage of
encapsulated shoot tips. Explants encapsulated in calcium alginate
beads desiccates in a laminar airflow cabinet or with activated silica
gel for reducing water content, and then they are fast immersed
directly in liquid nitrogen [53]. This technique has been used for
shoot tips of many species from tropical and subtropical origin as
well as to cell suspensions and somatic embryos of several
species [54].

Droplet Vitrification The droplet vitrification method based on chemical vitrification and
one-step freezing treatments was first reported by Sch€afer-Menuhr
et al. [55] using potato shoot tips. In this technique, 01–03 mm
explants (Fig. 3a) are treated with the cryoprotectant solution
(usually PVS2) put individually in 3–10 μL droplets of cryoprotec-
tant solutions (depending on explant size) placed on a piece of

Fig. 2 Naked 0.1 mm shoot tip (a) and encapsulated meristem (b) of Eucalyptus spp. for cryotherapy via
encapsulation-vitrification method; regrowth stages of after 4 weeks (c) and 6 weeks (d) of encapsulated
meristems of frozen Eucalyptus spp. [38]
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aluminum foil strip (Fig. 3b), which is then directly immersed in
liquid nitrogen. For rewarming, the aluminum foils are directly
plunged in liquid medium supplemented with 1–1.2 M sucrose,
and after 20 min of unloading, shoot tips are transferred on
regrowth medium (Fig. 3c). The main advantage of this method
is the possibility of achieving very high cooling/warming rates due
to the very small volume of cryoprotectant solution which the
explants are placed. Although this is a newly developed technique,
there are many reports obtained with a high regrowth percentage
after immersion of liquid nitrogen [38, 39, 56–58].

3 Confirmation of Pathogen-Free Plants

3.1 Immunodiag-

nostic Techniques:

ELISA

Determination of plant viruses is usually based on their biological
characteristics (host range, typical symptoms), and this process has
been achieved via serological tests since the 1960s. Serological
laboratory tests were originally developed for determination of
viruses by using antibodies to detect epitopes of protein antigens.
The immunological diagnostic methods include enzyme-linked
immunosorbent assay (ELISA), immunofluorescence (IF), and
immuno-strip tests [59]. ELISA is by far the most traditional
used immunodiagnostic method for virus determination since the
1970s [60]. Variations on this technique exist that differ from each
other in the way the antigen-antibody complex is detected, but the
underlying mechanism is the same.

3.2 DNA-Based

Techniques: Reverse

Transcriptase-PCR

(RT-PCR)

Plant virus diagnostics and detection of polymerase chain reaction-
based techniques have progressively been used in recent years to
improve diagnostic assays for plant pathogens. These techniques
have the potential to be very sensitive and highly specific and are
based on the unique nucleic acid sequence of the pathogens
[61]. Cheap and effective nucleic acid extraction methods have
already been described, including total RNA (Fig. 4), double-

Fig. 3 Treatment of samples with the cryoprotectant solution and their placement on aluminum foil strip with
subsequent transfer on regrowth medium

144 Ergun Kaya et al.



stranded RNA (dsRNA), and DNA extractions from plant material
[62]. Additionally, these techniques provide an efficient and rapid
tool for large-scale early screening of plant material, especially in
virus elimination programs [63].

4 Conclusions

Plant pathogen elimination using cryotherapy techniques is a newly
developing method that can be readily tested with different plant
species and cultivars for which cryogenic processes are available.
Cryotherapy-based procedures could also be easily applied in basic
tissue culture laboratories related in pathogen-free plant produc-
tion, where they could simplify the application of wide numbers of
plant materials, result in notable density of pathogen-free plants,
and prevent the difficulties associated with the excision of small
shoot tips. Such protocols do not require any specific tools and only
marginally add to the time and cost of the traditional procedures of
shoot tip culture for pathogen elimination. Furthermore, the use of
cryogenic procedures based on vitrification and optimized
regrowth of shoot tips should reduce the risk of genetic stability
of treated plants.
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